
Introduction

In recent years, the utilization of zkSNARKS has witnessed a significant upsurge in the

blockchain space unlocking new possibilities for protecting users data, enhancing scala-

bility, and allowing interoperability.

zkSNARKs play a crucial role in enabling use cases where user data privacy is fundamental

while engaging in decentralized applications.

Taking a step backk, zkSNARKs are cryptographic proofs that enable one party (the

prover) to convince another party (the verifier) that a certain statement is true without

revealing any data involved in the statement itself. The 'zero-knowledge' property ensures

that the proof does not disclose any additional information beyond the fact that the

statement is true.

In the context of blockchain applications, zk-SNARKs can be adopted to enhance user

data protection by allowing transactions to be verified without disclosing all the informa-

tion needed for the on-chain execution. More specifically the users no longer need to

share their data because they can cryptographically prove statements about their data

while keeping it private and just share the proof. For instance, this enables an on-chain

smart contract to verify statements on users' data by validating the Zero Knowledge

proof, eliminating the necessity to access the private data of users. The smart contract

integrating such capabilities enables many use cases that would have been impossible to

implement on public blockchains for privacy reasons.

Looking ahead, as the need for compliance with national regulations becomes more

important, digital identity will assume a pivotal role in every transaction. Zero-knowledge

proofs will play a crucial role in striking a balance between privacy and regulatory adher-

ence. This aligns with the evolving landscape of blockchain technology, where priva-

cy-preserving mechanisms like ZKPs are pivotal for ensuring secure transactions while

upholding regulatory requirements.

Another important application of zkSNARKs is related to scalability. As partially mentioned

above, in a more general sense, the SNARK proof can be seen as a succinct proof of com-

putation. For example, if the computation involves the execution of a VM (virtual ma-

chine), it is possible to generate a succinct proof of the VM's execution, including an

Ethereum Virtual Machine (EVM). Zero-Knowledge Virtual Machines follow this approach,

for instance, to enable the creation of trustless rollups leveraging zkSNARKs to prove

statements to the Layer 1 chain about the rollup. This enables fully trustless, secure, and

cryptographically proven communication channels.

A Decentralized Protocol for Scaling SNARKs Verification in Blockchains

Furthermore, the fusion of zero-knowledge principles with Artificial Intelligence (AI) holds

immense potential. It allows AI models to be employed without the need for on-chain

execution. Instead, only the verification of the executed result occurs on-chain, reducing

computational overhead while maintaining the integrity of the AI processes.

In such a scenario, it becomes necessary to design a system that can support an increas-

ing number of transactions using ZK proofs to be verified on-chain. For example, multiple

concurrent users could submit their transactions, interacting with smart contracts featur-

ing privacy-preserving functions, and multiple rollups or ZK bridges could post their com-

munication proofs on the main chain. In this context, it's immediately evident that, even

with proving systems with the fastest verification time, the straightforward approach of

including all transactions along with their proofs in the block, and having each node verify

all the proofs, quickly reaches the limits of block time and/or space budget.

moDel

An approach that can address these challenges consists of constructing a system that

leverages the advantages of efficient recursive proof composition. Recursive proof com-

position involves creating a new proof that encapsulates and verifies multiple existing

proofs, reducing the verification cost and improving the scalability of a blockchain system

supporting ZK-enabled transactions.

4 On-Chain Proof

Verifications

1 Aggregated On-Chain

Proof Verification

User 1 User 2

User 4User 3

Vs

Slow Fast

Building upon this concept, we present SNARKtor, a scalable and robust protocol for

decentralized recursive proof aggregation. It allows aggregating many proofs for different

transactions into a unique proof. The transactions can be totally unrelated (e.g. some

transactions can use ZK for protecting user data privacy, some for compliance purposes,

and others using ZK to validate a zk-rollup state update). The resulting proof can be

verified more efficiently having a constant verification time independent from the number

of aggregated proofs. This not only enhances the scalability and efficiency of a block-

chain system but also makes it more feasible for use cases that require low latency, for

example removing the need for expensive proof wrappings.

The SNARKtor protocol is designed to work in a decentralized environment where inde-

pendent actors can join and contribute to the recursive proof aggregation process. The

protocol is constructed to create competition between provers in order to incentivize fair

cost of proof generation. As the proof aggregation process requires the creation and

dissemination of many intermediate proofs, the protocol also avoids expensive proof

verification during broadcasting, furtherly improving the efficiency of the aggregation

process.

In order to describe the flow, let’s take as an example an on-chain application that lever-

ages ZK proofs to protect users' data privacy. In such a scenario, in order to interact with

the application, a user should provide a ZK proof along with the transaction.

Decentralized Applications Architecture with ZK

Smart contract verifies statements on

private data by verifying the proof,

executes logic and update pubilc state

User executes

privately a

program proving

some facts

about some

private data

Mainchain

Smart

Contract Telos VM

State

Update
User Tx

Public DataZK Proof

ZK Proof

Private Data
Statment to

Prove

Prover

User Tx

Public Data

ZK Proof

High Level Scheme

In our model, the user instead of directly submitting the transaction with the proof, will

first submit a request using the SNARKtor protocol to process the proof and then submit

the transaction on chain referring to that proof.

At a very high level, the SNARKtor protocol continuously processes proofs by aggregating

them in a decentralized fashion and periodically submits an aggregated proof on chain.

This aggregated proof confirms the validity of all users’ underlying proofs, allowing user

transactions to indirectly prove to the on-chain smart contract the existence of a valid

proof.

This process can be made totally transparent to the user by implementing a well-de-

signed user interface.

Smart contract verifies statements on

private data by verifying the proofs,

executes logic and update pubilc state

Mainchain

Smart

Contract Telos VM

State

Update

User executes

privately a

program proving

some facts

about some

private data

User Tx

Public DataZK Proof

ZK Proof

Private Data
Statment to

Prove

Prover

User Tx

Public Data

Refferal to

ZK Proof

User ZK Proof

Submission

ZK Proofs

Aggregation Process

Aggregated ZK

Proof Submission

SNARKtor
Decentralized Network

Aggregated

ZK Proof

User Transaction

Submission

actors

Looking more closely, we can identify the following actors participating in the protocol:

Users.

Users submit requests for the ZK proofs they want to be aggregated. When the corre-

sponding ZK proof is aggregated and submitted on-chain, the user can submit a transac-

tion referring to the aggregated proof.

Schedulers.

Special entities that coordinate the proof aggregation process. Specifically, their task is

to maintain a sequence of proofs and provide a schedule defining who, how, and when

make the computational work of merging proofs.

Provers.

The actual workers who perform the task of merging proofs according to the schedule

provided by schedulers.

Submitters.

They submit final aggregated proofs on-chain. From the merging protocol perspective

their task is to pick up an aggregated proof and include it into a block or submit to the

smart contract (depending on the implementation).

It’s important to note that depending on the implementation, Schedulers and Submitters

can be selected from the block producers set of the underlying chain in order to inherit its

decentralization.

aggregation Flow

The protocol operates in an environment where time is divided into

slots of constant duration.

• Users continuously submit their proofs augmenting the proofs queue.

• Every slot is assigned to a proof scheduler and at the beginning of each slot, the

scheduler picks up a set of proofs from the proofs queue and issues a schedule defin-

ing which provers should merge what ZK proofs.

• Each assigned prover, merge the assigned proofs and share the resulting merged proof

to the other network participants.

• The resulting merged proofs are added to the proofs queue and the relative source

proofs are removed from it.

• The schedule loop continues infinitely.

In parallel to scheduling and merging, the submission process is responsible for picking up

one of the merged proofs and submitting it on chain. More specifically the submission

environment is divided into submission epochs. Depending on the implementation, the

submission epoch can be bound for example to chain blocks or slots.

• Each submission epoch is assigned to a specific submitter.

• The assigned submitter takes one aggregated proof, finalizes it for submission and

submits it on-chain. The submitter is allowed (but not obliged) to submit exactly one

proof per epoch.

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p1:2

p3:4

p5:6

p7:8

p9

p10

p11

p12

p13

p14

p15

p16

p1:4

p5:8

p9:10

p11:12

p13

p14

p15

p16

p17

p18

p19

p20

p1:8

p9:12

p13:14

p15:16

p17

p18

p19

p20

p21

p22

p23

p24

p1:12

p13:16

p17:18

p19:20

p21

p22

p23

p24

p25

p26

p27

p28

p1:16

p17:20

p21:22

p23:24

p25

p26

p27

p28

p29

p30

p31

p32

Merged by Pr 1

Merged by Pr 4

Merged by Pr 3

Merged by Pr 2

Merged by Pr 1

Merged by Pr 4

Merged by Pr 3

Merged by Pr 2

Merged by Pr 1

Merged by Pr 4

Merged by Pr 3

Merged by Pr 2

Merged by Pr 1

Merged by Pr 4

Merged by Pr 3

Merged by Pr 2

Merged by Pr 1

Merged by Pr 4

Merged by Pr 3

Merged by Pr 2

Merged by Pr 1

Merged by Pr 4

Merged by Pr 3

Merged by Pr 2

Proofs

Queue 1

Proofs

Queue 3

Proofs

Queue 5

Proofs

Queue 6

Slot 6

Schedule 6

Slot 5

Schedule 5

Slot 4

Schedule 4

Slot 3

Schedule 3

Slot 2

Schedule 2

Slot 1

Schedule 1

Proofs

Queue 2

Proofs

Queue 4

Submitted On-ChainSubmitted On-ChainSubmitted On-Chain

p User 1

p User 2

p User n

p User 1

p User 2

p User n

p User 1

p User 2

p User n

p User 1

p User 2

p User n

p User 1

p User 2

p User n

p User 1

p User 2

p User n

Rewards

The rewards are paid out from the collected fees coming from the users’ aggregation

requests that are kept by the aggregation service. The on-chain component maintains a

reward pool from which every actor can withdraw their rewards. Considering that a with-

drawal for every generated proof or issued schedule will be very expensive to be pro-

cessed on-chain, the protocol leverages SNARKs also to allow an actor to collectively

withdraw many rewards with a single transaction.

For what regards incentives, distribution of fees between participants, the further scaling

solution avoiding proofs verification during broadcasting and many other important

aspects of the protocol we invite you to read the SNARKtor whitepaper https://eprint.ia-

cr.org/2024/099.pdf

Conclusions

Zero-knowledge techniques play an increasingly important role in the blockchain system

allowing a wide range of different applications, such as transactions protecting users

data, compliance, ZK rollups, trustless interoperability between chains, and many more.

Nevertheless, despite all developments in optimization of ZK proving systems, their execu-

tion on-chain is still expensive.

With SNARKtor we propose a decentralized solution to substantially reduce the verifica-

tion cost and improve scalability of an existing blockchain system. As the blockchain

landscape evolves to accommodate ever-expanding transaction volumes and diverse use

cases, developing such protocols become increasingly important to realize the vision of

decentralized, scalable, compliant and privacy-preserving blockchain networks.

